Międzynarodowy zespół Forward Search Experiment, kierowany przez fizyków z Uniwersytetu Kalifornijskiego w Irvine, dokonał pierwszego w historii wykrycia neutrina-kandydata wyprodukowanego przez Wielki Zderzacz Hadronów w ośrodku CERN pod Genewą w Szwajcarii.
W artykule opublikowanym dzisiaj w czasopiśmie fizyczny przegląd dW 2018 roku naukowcy opisali, jak zaobserwowali sześć interakcji neutrin podczas eksperymentalnego uruchomienia ciśnieniowego detektora emulsji zainstalowanego w LHC w 2018 roku.
„Przed tym projektem nie było śladu neutrin w zderzaczu cząstek” – powiedział współautor Jonathan Feng, wybitny profesor fizyki i astronomii UCI oraz współkierownik współpracy FASER. „Ten ważny przełom jest krokiem w kierunku głębszego zrozumienia tych nieuchwytnych cząstek i roli, jaką odgrywają we wszechświecie”.
Powiedział, że odkrycie dokonane podczas pilota dało jego zespołowi dwie ważne informacje.
„Najpierw sprawdź, czy przednia pozycja punktu interakcji ATLAS w LHC jest właściwą lokalizacją do wykrywania neutrin zderzających” – powiedział Feng. „Po drugie, nasze wysiłki wykazały skuteczność wykorzystania detektora emulsji do monitorowania tego typu oddziaływań neutrin”.
Przyrząd doświadczalny składał się z płytek ołowianych i wolframowych naprzemiennie z warstwami emulsji. Podczas zderzeń cząstek w LHC niektóre neutrina rozbijały się o gęste metalowe rdzenie, tworząc cząstki, które przechodzą przez warstwy emulsji i tworzą widoczne ślady po obróbce. Inskrypcje te dostarczają wskazówek na temat energii i smaków cząstki – tau, mionu lub elektronu – oraz tego, czy są to neutrina, czy antyneutrina.
Zdaniem Fenga emulsja działa podobnie do fotografii sprzed ery aparatu cyfrowego. Gdy film 35 mm jest wystawiony na działanie światła, fotony pozostawiają ślady, które pojawiają się jako wzory podczas wywoływania filmu. Badacze z projektu FASER byli również w stanie zaobserwować interakcje neutrin po usunięciu i rozwinięciu warstw emulsji w detektorze.
Po sprawdzeniu skuteczności podejścia detektora emulsji w obserwacji oddziaływań neutrin wytwarzanych przy a zderzacz cząstekZespół FASER przygotowuje teraz nową serię eksperymentów przy użyciu znacznie większego i znacznie czulszego kompletnego instrumentu” – powiedział Feng.
Od 2019 roku wraz z kolegami przygotowuje się do przeprowadzenia eksperymentu z wykorzystaniem instrumentów FASER do zbadania ciemnej materii LHC. Mają nadzieję wykryć ciemne fotony, co dałoby naukowcom wstępny wgląd w to, jak to się może stać. Ciemna materia Oddziałuje ze zwykłymi atomami i inną materią we wszechświecie poprzez siły inne niż grawitacja.
Dzięki sukcesom swojej pracy nad neutrinami w ciągu ostatnich kilku lat, zespół FASER – składający się z 76 fizyków z 21 instytucji w dziewięciu krajach – łączy emulsja Detektor z urządzeniem FASER. Podczas gdy eksperymentalny detektor waży około 64 funtów, instrument FASERnu będzie ważył ponad 2400 funtów i będzie bardziej reaktywny i zdolny do rozróżniania typów neutrin.
powiedział współautor David Kasper, lider współprojektu FASER i profesor nadzwyczajny fizyki i astronomii na UCI. „Odkryjemy neutrina o najwyższej energii, które zostały wyprodukowane ze źródła stworzonego przez człowieka”.
Powiedział, że to, co czyni FASERnu wyjątkowym, to fakt, że podczas gdy inne eksperymenty były w stanie rozróżnić jeden lub dwa rodzaje neutrin, będą one w stanie zaobserwować wszystkie trzy smaki, jak również ich odpowiedniki antyneutrinowe. Casper powiedział, że w całej historii ludzkości było tylko około 10 obserwacji neutrin taonowych, ale spodziewa się, że jego zespół będzie w stanie podwoić lub potroić tę liczbę w ciągu najbliższych trzech lat.
„To niesamowicie fascynujące połączenie z tradycją na wydziale fizyki w UCI”, powiedział Feng, „ponieważ kontynuuje spuściznę Frederica Reinesa, członka założyciela wydziału UCI, który otrzymał Nagrodę Nobla w dziedzinie fizyki za bycie pierwszym odkryć neutrina. „
„Wyprodukowaliśmy światowej klasy eksperyment w najlepszym na świecie laboratorium fizyki cząstek elementarnych w rekordowym czasie i przy użyciu bardzo niekonwencjonalnych zasobów” – powiedział Casper. „Mamy ogromny dług wdzięczności wobec Fundacji Heising-Simons i Fundacji Simonsa, a także Japońskiego Towarzystwa Promocji Nauki i CERN, które hojnie nas wsparły”.
Savannah Shivley i dr Jason Arakawa z UCLA. Wkład w badania wnieśli także studenci fizyki i astronomii.
Henso Abreu i wsp., pierwsi dwaj kandydaci na oddziaływanie neutrin w LHC, fizyczny przegląd d (2021). DOI: 10.1103/PhysRevD.104.L091101
cytat: Fizycy odkrywają oznaki neutrin w Wielkim Zderzaczu Hadronów (2021, 26 listopada), pobrane 26 listopada 2021 z https://phys.org/news/2021-11-physicists-neutrinos-large-hadron-collider.html
Niniejszy dokument podlega prawu autorskiemu. Bez względu na jakiekolwiek uczciwe postępowanie w celach prywatnych studiów lub badań, żadna część nie może być powielana bez pisemnej zgody. Treść jest udostępniana wyłącznie w celach informacyjnych.